Hierarchically Structured Inductive Learning for Fault Diagnosis

نویسنده

  • Michael G. Madden
چکیده

This paper presents a new methodology for fault diagnosis, based on the natural hierarchy of components and sub-components in electrical and/or mechanical systems. In the first section, the advantages of hierarchically decomposing learning tasks are discussed. In the second section, the author’s fault diagnosis system, DE/ IFT, is introduced. The underlying algorithm, the training cycle and the operation of DE/IFT are then discussed. In the third section, the hierarchical methodology for fault diagnosis is presented. In the section following, Hierarchical Condition Description files are introduced and the details of implementing hierarchical fault diagnosis within DE/IFT are explained. Next, an example application is discussed. Results of hierarchical fault diagnosis are presented. These are compared with equivalent results from a non-hierarchical analysis of the same system. Finally, at the end of the paper conclusions are drawn.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inductive learning for fault diagnosis

There is a steadily increasing need for autonomous systems that must be able to function with minimal human intervention to detect and isolate faults, and recover from such faults. In this paper we present a novel hybrid Model based and Data Clustering (MDC) architecture for fault monitoring and diagnosis, which is suitable for complex dynamic systems with continuous and discrete variables. The...

متن کامل

Phonological generalization from distributional evidence

We propose a model of L2 phonological learning in which the acquisition of novel phonological category inventories proceeds not by mapping L2 inputs onto existing category inventories available in L1 and other already known languages, but rather through general categorization processes in which L1 and other language knowledge serves as an inductive bias. This approach views linguistic knowledge...

متن کامل

Fuzzy Genetic Algorithm Based Inductive Learning System (FGALS): A New Machine Learning Approach and Application For Chemical Process Fault Diagnosis

In today’s complex chemical processes, extracting of general knowledge from the noisy raw process data, coming continuously from the sensors, is an important issue. In this paper, an approach for symbolic knowledge extracting from noisy raw process data based on genetic algorithms (GAs), namely Fuzzy Genetic Algorithm based inductive Learning System (FGALS), is illustrated. The developed system...

متن کامل

Fault diagnosis in a distillation column using a support vector machine based classifier

Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...

متن کامل

Inductive Generation of Diagnostic Knowledge for rhutonomous Assembly - Robotics and Automation, 1995. Proceedings., 1995 IEEE International Conference on

A generic architecture for evolutive supervision of robotized assembly tasks is presented. This architecture provides, at different levels of abstraction, functions for dispatching actions, monitoring their execution, and diagnosing and recovering from failures. Modeling execution failures through taxonomies and causal networks plays a central role in diagnosis and recovery. Through the use of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998